无约束优化方法分为两类:
第一类:直接解法。这种方法中只用到函数f(x),而不涉及其导数,如坐标轮换法、鲍威尔法(Powell法)、随机搜索法、单纯形法等;
第二类:间接解法。它要用到f(x)的导数,如用到一阶导数的方法有梯度法、共扼梯度法和变尺度法;用到二阶导数的方法以牛顿法为代表。间接解法也称为解析法。
(简答题)
无约束优化方法分为哪两类?
正确答案
答案解析
略
相似试题
(简答题)
无约束优化问题的求解方法是。
(单选题)
下列优化方法中,其处理方法是将有约束优化问题转化为无约束优化问题来处理的是()
(简答题)
有约束优化方法根据对约束的处理方法不同,可以分为直接法和间接法。
(单选题)
对于一个无约束优化问题,若其一阶、二阶偏导数易计算,且计算变量不多(n≤20),宜选用的优化方法是()
(填空题)
约束条件可分为边界约束和()两类。
(单选题)
对于一个无约束优化问题,若设计变量很多(n>20),且每一步的Hessian矩阵求解很费时间,则下列方法对于该类问题较为适用的是()
(名词解析)
无约束优化问题
(填空题)
最优化问题,按是否包含有约束条件分为()和()。
(简答题)
求解等式约束优化问题的两种处理方法。