(判断题)
存在多重共线情况下,多元线性回归模型的结构参数的普通最小二乘估计量不再是最佳线性无偏估计。
A对
B错
正确答案
答案解析
略
相似试题
(简答题)
判断以下陈述的正误,并给出理由。 (1)尽管存在多重共线性,OLS估计量仍然是具有BLUE性质的。 (2)在高度多重共线性的情形下,要评价一个或多个偏回归系数的个别显著性是不可能的。 (3)如果有某一辅助回归显示出高的R2值,则模型中肯定存在较严重的多重共线性问题。 (4)变量的两两高度相关并不表示高度的多重共线性。 (5)如果分析的目的仅仅是预测,则多重共线性是无害的。 (6)其它条件不变,VIF越高,相应的OLS估计量的方差越大。 (7)在多元回归中,如果根据t检验,全部的偏回归系数个别来说都是不显著的,那么就不可能得到一个较高的R2。
(判断题)
在存在接近多重共线性的情况下,回归系数的标准差会趋于变小,相应的t值会趋于变大。
(判断题)
多元线性回归模型中的偏回归系数,表示在其他解释变量保持不变的情况下,对应解释变量每变化一个单位时,被解释变量的变动。
(单选题)
如果回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量()
(单选题)
在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近1,则表明 模型中存在()
(判断题)
存在异方差情况下,线性回归模型的结构参数的普通最小二乘估计量是有偏的和非有效的。
(单选题)
多元线性回归模型中,发现各参数估计量的t值都不显著,但模型的判定系数却很大,F统计量也很显著,这说明模型存在()。
(单选题)
多元线性回归模型中,发现各参数估计量的t值都不显著,但模型的R2(或)很大,F值确很显著,这说明模型存在()
(简答题)
多元线性回归模型与一元线性回归模型有哪些区别?