计算题:某调查公司研究出租司机每天收入(元)与行驶里程(公里)之间的关系。对30位出租车司机进行调查,并根据每天的收入y、行驶里程x进行回归,得到:方程的截距为162,回归系数为0.6,回归平方和SSR=2600,残差平方和SSE=513。要求: (1)写出每天的收入y与行驶里程x之间的线性回归方程。 (2)假如某司机某天行驶了300公里,根据回归方程估计他该天的收入。 (3)计算判定系数R2,并解释它的意义。
正确答案
答案解析
相似试题
(简答题)
计算题:为估计每个网络用户每天上网的平均时间是多少,抽取了225个网络用户的简单随机样本,得到样本均值为6.5个小时,样本标准差为2.5个小时。 (1)试用95%的置信水平,计算网络用户每天平均上网时间的置信区间。 (2)在所调查的225个网络用户中,年龄在20岁以下的用户为90个。以95%的置信水平,计算年龄在20岁以下的网络用户比例的置信区间。 注:
(填空题)
为了解IT行业从业者收入水平,某研究机构从全市IT行业从业者随机抽取800人作为样本进行调查,其中44%回答他们的月收入在6000元以上,30%回答他们每月用于娱乐消费在1000元以上。此处800人是()
(简答题)
计算题:甲单位人均月收入4500元,标准差1200元。乙单位月收入分布如下所示。 要求: (1)计算乙单位员工月收入的均值和标准差。 (2)比较甲单位和乙单位哪个单位员工月收入的离散程度更大?(提示:使用离散系数)
(简答题)
计算题:某单位为研究其商品的广告费用(x)对其销售量(y)的影响,收集了过去12年的有关数据。通过分析得到以下结果: 要求: (1)计算上面方差分析表中A、B、C、D、E、F处的值。 (2)商品销售量的变差中有多少是由广告费用的差异引起的? (3)销售量与广告费用之间的相关系数是多少?
(填空题)
某地区政府想了解全市332.1万户家庭年均收入水平,从中抽取3000户家庭进行调查,以推断所有家庭的年均收入水平。这项研究的总体是()
(简答题)
计算题:某公司欲了解广告费用x对销售量y的影响,收集了16个地区的数据,并对x、y进行线性回归分析,得到:方程的截距为280,回归系数为1.6,回归平方和SSR=1503000,残差平方和SSE=38000。 要求: (1)写出广告费用x与销售量y之间的线性回归方程。 (2)假如广告费用投入80000元,根据回归方程估计商品的销售量。 (3)计算判定系数R2,并解释它的意义。
(简答题)
计算题:某公司招聘职员时,要求对职员进行两项基本能力测试。已知,A项测试中平均分数为90分,标准差是12分;B考试中平均分数为200分,标准差为25分。一位应试者在A项测试中得了102分,在B项测试中得了215分。若两项测试的成绩均服从正太分布,该位应试者哪一项测试更理想?
(简答题)
计算题:某公司欲了解广告费用x对销售量y的影响,收集了20个地区的数据,并对x、y进行线性回归分析,得到:方程的截距为364,回归系数为1.42,回归平方和SSR=1602708.6,残差平方和SSE=40158.07。要求: (1)写出广告费用x与销售量y之间的线性回归方程。 (2)假如广告费用投入50000元,根据回归方程估计商品销售量。 (3)计算判定系数R2,并解释它的意义。
(填空题)
在现代社会中,抽样与(),计算机技术,()相结合,形成了社会调查研究的最主要类型,即抽样调查。