半径为R、质量为m的均质圆轮沿斜面作纯滚动如图所示。已知轮心C的速度为v、加速度为a,则该轮的动能为()
A(1/2)mv2
B(3/2)mv2
C(3/4)mv2
D(1/4)mv2
正确答案
答案解析
相似试题
(简答题)
(动量矩定理)均质圆柱体的质量为m,半径为r,放在倾角为60º的斜面上,一细绳绕在圆柱体上,其一端固定在A点,此绳和A点相连部分与斜面平行,如图所示。如圆柱体与斜面间的东摩擦因数为f=1/3,求圆柱体的加速度。
(简答题)
已知均质杆AB的质量m=4kg,长l=600mm,均匀圆盘B的质量为6kg,半径为r=600mm,作纯滚动。弹簧刚度为k=2N/mm,不计套筒A及弹簧的质量。连杆在与水平面成30º角时无初速释放。求(1)当AB杆达水平位置而接触弹簧时,圆盘与连杆的角速度;(2)弹簧的最大压缩量δmax
(单选题)
杆OA与均质圆轮的质心用光滑铰链A连接,如图所示,初始时它们静止于铅垂面内,现将其释放,则圆轮A所做的运动为:()
(简答题)
已知:轮O的半径为R1,质量为m1,质量分布在轮缘上;均质轮C的半径为R2,质量为m2,与斜面纯滚动,初始静止。斜面倾角为θ,轮O受到常力偶M驱动。求:轮心C走过路程s时的速度和加速度。
(单选题)
均质圆环的质量为m,半径为R,圆环绕O轴的摆动规律为φ=ωt,ω为常数。图示瞬时圆环对转轴O的动量矩为:()
(简答题)
已知:如图所示均质圆环半径为r,质量为m,其上焊接刚杆OA,杆长为r,质量也为m。用手扶住圆环使其在OA水平位置静止。设圆环与地面间为纯滚动。求:放手瞬时,圆环的角加速度,地面的摩擦力及法向约束力。
(单选题)
图示a)、b)系统中的均质圆盘质量、半径均相同,角速度与角加速度分别为ω1、ω2和a1、a2,则有:()
(单选题)
图示均质圆盘质量为m,绕固定轴O转动,角速度均为w。动能为()。
(简答题)
(动量矩定理)均质圆柱体A和B的质量均为m,半径均为r,一细绳缠在绕固定轴O转动的圆柱A上,绳的另一端绕在圆柱B上,直线绳段铅垂,如图所示。不计摩擦。求:(1)圆柱体B下落时质心的加速度;(2)若在圆柱体A上作用一逆时针转向力偶矩M,试问在什么条件下圆柱体B的质心加速度将向上。