(题干)
本题共计 2 个问题
设二维随机变量(X,Y)在区域D={(x,y)|x≥0,y≥0,x+y≤1}上服从均匀分布.
简答题
第 1 题
求(X,Y)关于X的边缘概率密度
正确答案
答案解析
略
简答题
第 2 题
求Z=X+Y的分布函数与概率密度.
正确答案
答案解析
略
相似试题
(简答题)
设二维随机变量(X,Y)在区域D={(x,y)|x≥0,y≥0,x+y≤1}上服从均匀分布.求Z=X+Y的分布函数与概率密度.
(填空题)
设二维随机变量(X,Y)在区域D上服从均匀分布,其中D://0≤x≤2,0≤y≤2。记(X,Y)的概率密度为f(x,y),则f(1,1)=()
(简答题)
设平面区域D由曲线y=1/x及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,求(X,Y)关于X的边缘概率密度在x=2处的值为多少?
(单选题)
设二维随机变量(X,Y)服从区域D://x2+y2≤1上的均匀分布,则(X,Y)的概率密度为()
(简答题)
设二维随机变量(X,Y)在抛物线所围成的区域上服从均匀分布,求
(简答题)
设二维随机变量(X,Y)的联合概率密度为 (1)求X,Y的数学期望E(X),E(Y),方差D(X),D(Y) (2)求X,Y的协方差cov(X,Y)与相关系数R(X,Y)。
(简答题)
设二维随机变量(X,Y)服从二维正态分布求(X,Y)的联合概率密度。