(简答题)
若某一信源有N个符号,并且每个符号等概率出现,对这信源用最佳霍夫曼码进行二元编码,问当N=2i和N=2i+1(i是正整数)时,每个码字的长度等于多少?平均码长是多少?
正确答案
答案解析
略
相似试题
(单选题)
某信源由4个不同符号组成,每个符号出现的概率相同,信源每秒发出100个符号,则该信源的平均信息速率为()。
(判断题)
某一信源,不管它是否输出符号,只要这些符号具有某些概率特性,就有信息量。
(简答题)
设有一离散无记忆信源,其概率空间为 (1)求每个符号的自信息量; (2)信源发出一消息符号序列为,求该序列的自信息量和平均每个符号携带的信息量。
(简答题)
设离散无记忆信源S其符号集A={a1,a2,...,aq},知其相应的概率分别为(P1,P2,...,Pq)。设另一离散无记忆信源S′,其符号集为S信源符号集的两倍,A′={ai,i=1,2,...,2q},并且各符号的概率分布满足: 试写出信源S′的信息熵与信源S的信息熵的关系。
(简答题)
证明一个离散信源在它的输出符号等概率的情况下其熵达到最大值。
(简答题)
某一无记忆信源的符号集为{0,1},已知P(0)=1/4,P(1)=3/4。 (1)求符号的平均熵; (2)有100个符号构成的序列,求某一特定序列(例如有m个“0”和(100 - m)个“1”)的自信息量的表达式; (3)计算(2)中序列的熵。
(填空题)
对具有8个消息的单符号离散无记忆信源进行4进制哈夫曼编码时,为使平均码长最短,应增加()个概率为0的消息。
(判断题)
离散无记忆序列信源中平均每个符号的符号熵等于单个符号信源的符号熵。
(填空题)
自信息量表征信源中各个符号的不确定度,信源符号的概率越大,其自信息量越()