(简答题)
某一无记忆信源的符号集为{0,1},已知P(0)=1/4,P(1)=3/4。 (1)求符号的平均熵; (2)有100个符号构成的序列,求某一特定序列(例如有m个“0”和(100 - m)个“1”)的自信息量的表达式; (3)计算(2)中序列的熵。
正确答案
答案解析
略
相似试题
(简答题)
一阶马尔可夫信源的状态图如图所示。信源X的符号集为{0,1,2}。 (1)求平稳后信源的概率分布; (2)求信源的熵H∞。
(简答题)
设离散无记忆信源S其符号集A={a1,a2,...,aq},知其相应的概率分别为(P1,P2,...,Pq)。设另一离散无记忆信源S′,其符号集为S信源符号集的两倍,A′={ai,i=1,2,...,2q},并且各符号的概率分布满足: 试写出信源S′的信息熵与信源S的信息熵的关系。
(单选题)
设有一个无记忆信源发出符号A和B,已知,发出二重符号序列消息的信源,无记忆信源熵为()。
(填空题)
某离散无记忆信源X,其符号个数为n,则当信源符号呈()分布情况下,信源熵取最大值()。
(填空题)
对具有8个消息的单符号离散无记忆信源进行4进制哈夫曼编码时,为使平均码长最短,应增加()个概率为0的消息。
(简答题)
设有一离散无记忆信源,其概率空间为 (1)求每个符号的自信息量; (2)信源发出一消息符号序列为,求该序列的自信息量和平均每个符号携带的信息量。
(判断题)
离散无记忆序列信源中平均每个符号的符号熵等于单个符号信源的符号熵。
(单选题)
有一二进制信源符号,0和1发生的概率分别P(0)与P(1),当()概率发生时,信源的熵达到最大值。
(简答题)
设离散无记忆信源其失真度为汉明失真度。 (1)求Dmin,R(Dmin),并写出相应试验信道的信道矩阵; (2)求Dmax,R(Dmax),并写出相应试验信道的信道矩阵; (3)若允许平均失真度D=1/3,试问信源的每一个信源符号平均最少由几个二进制码符号表示?