微积分的建立标志着变量数学的诞生。
A对
B错
正确答案
答案解析
相似试题
(单选题)
第二次数学危机,指发生在十七、十八世纪,围绕微积分诞生初期的基础定义展开的一场争论,这场危机最终完善了微积分的定义和与实数相关的理论系统,同时基本解决了第一次数学危机的关于无穷计算的连续性的问题,并且将微积分的应用推向了所有与数学相关的学科中。而这场争论是指()
(单选题)
《几何原本》就是用()的链子由此及彼的展开全部几何学,它的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。
(单选题)
英国的牛顿和德国的莱布尼兹分别以()为背景用无穷小量方法建立了微积分。
(单选题)
在建立数学模型的过程中,()这一环节是很重要的。
(填空题)
就数学发展的历史进程来看,从算术到代数、从常量数学到变量数学、从确定数学到随机数学等是数学思想方法的几次重要突破。代数形成解决了具有复杂()的问题,变量数学创立刻划了()的事物与现象,随机数学出现揭示了()背后所蕴涵的规律。
(填空题)
《九章算术》确定了中国古代数学的框架,不仅以()归纳体系、()内容、()方法为特点影响我国数学成就的建立,而且在培养和造就我国数学家方面起到了促进作用。
(填空题)
哥德尔不完全性定理一举粉碎了数学家两千年来的信念。他告诉我们:真与可证是两个概念()某种意义上,悖论的阴影将永远伴随着我们。
(填空题)
第三次数学危机产生于十九世纪末和二十世纪初,当时正是数学空前兴旺发达的时期。首先是逻辑的()促使了数理逻辑这门学科诞生,其中,十九世纪七十年代康托尔创立的()是产生危机的直接来源。
(单选题)
从16世纪开始,自然科学研究的中心问题是运动,科学家们相信对各种运动过程和各种变化着的量之间的依赖关系的研究可以用数学来描述。因此,作为运动着的量的一般性质及各个数量之间存在着相依而变的规律,科学家们引出了数学的一个基本概念()