下面是“对数函数及其性质”一节的引入过程,请阅读材料,从新课标的角度对此进行简要评析。 让学生看材料: 材料1(幻灯):马王堆女尸千年不腐之谜:一九七二年,马王堆考古发现震惊世界,专家发掘西汉辛追遗尸时,形体完整,全身润泽,皮肤仍有弹性,关节还可以活动,骨质比现在六十岁的正常人还好,是世界上发现的首例历史悠久的湿尸。大家知道,世界发现的不腐之尸都是在干燥的环境风干而成,譬如沙漠环境,这类干尸虽然肌肤未腐,但关节和一般人死后一样,是僵硬的,而马王堆辛追夫人却是在湿润的环境中保存二千多年,而且关节可以活动。人们最关注两个问题,第一:怎么鉴定尸体的年份?第二:是什么环境使尸体未腐?其中第一个问题与数学有关。 在长沙马王堆“沉睡”近2200年的古长沙国丞相夫人辛追,日前奇迹般地“复活”了。那么,考古学家是怎么计算出古长沙国丞相夫人辛追“沉睡”近2200年?上面已经知道考古学家是通过提取尸体的残留物碳14的残留量p估算尸体出土的年代,不难发现:对每一个碳14的含量的取值,生物死亡年数t都有唯一的值与之对应,从而t是p的函数; 材料2(幻灯):某种细胞分裂时,由1个分裂成2个,2个分裂成4个……,如果要求这种细胞经过多少次分裂,大约可以得到细胞1万个,10万个……,不难发现:分裂次数y就是要得到的细胞个数x的函数。
正确答案
答案解析
相似试题
(简答题)
课堂小结在教学过程中往往起到点睛之笔的重要作用。以下内容为某校老师的《对数的性质》的授课实录,请仔细阅读后为本节课设计一个课堂小结。 对数的性质 环节一:熟悉背景、引入课题 环节二:尝试画图、形成感知(画对数函数图象及对数函数图象的特征) 环节三:理性认识、发现性质(对数函数的图象、定义域、值域、单调性、过定点、取值范围) 环节四:探究问题、变式训练 环节五:课堂小结
(简答题)
请以人教版中的“指数函数及其性质”为课题写一个完整的教学设计。
(单选题)
设f(x)是R上的函数,则下列叙述正确的是()。
(单选题)
在Excel2003中,以下可以用来“插入函数”的按钮是()。
(简答题)
下面是一位教师执教函数奇偶性及课后交流时的实录。阅读下面材料,分析其中存在的问题。师:同学们,今天我们学习函数的奇偶性,它是非常重要的函数的性质,在高考中经常被考查,我先给出函数奇偶性的定义。(教师边板书,边讲解定义)师:从定义可以得到判断奇偶性的方法和步骤……下面我们讲例题。(以上的分析讲解不到6分钟,教师接着讲了三种类型的问题:判断、证明函数的奇偶性以及简单应用。接着就是学生的练习,教师的点评。在例题讲解、练习与分析的过程申,学生也积极地参与交流、踊跃发言)课后评课时,上课的老师自信地说,自己十分重视学生的活动,例题讲解清楚,问题分析到位,过程书写规范,充分保障练习,学生在考试时定能考出好成绩。当听课老师提出教学中对函数奇偶性概念建立过程没有很好地展开时,执教教师说:概念就是规定,让学生记住是主要的,没有什么好讲的,有时讲与不讲效果差不多,这样也是为了节省出更多的时间来解题。上述观点也得到了不少教师的赞同。
(简答题)
已知定义在R上的函数f(x)和数列{an}满足下列条件:
(简答题)
已知函数f(x)=x-alnx(a∈R) (1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程; (2)求函数f(x)的极值。
(单选题)
下列四类函数中,有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)f(y)”的是()。
(单选题)
用“面积、结构、用途”来描述房屋的特征,下列E-R图正确的是()。