(简答题)
已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点D,从每条曲线上取两个点,将其坐标记录于下表中: (1)求C1、C2的标准方程: (2)请问是否存在直线L满足条件:①过C2的焦点F;②与C1交不同两点M、N,且满足若存在,求出直线L的方程;若不存在,说明理由。
正确答案
答案解析
略
相似试题
(简答题)
设椭圆的中心在原点,焦点在x轴上,离心率。已知点到这个椭圆上的点的最远距离为,求这个椭圆方程。
(简答题)
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1。 (1)求椭圆C的标准方程; (2)若直线Z:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证:直线l过定点,并求出该定点的坐标。
(单选题)
已知AB为过抛物线y2=2px焦点F的弦,则以AB为直径的圆与抛物线的准线()。
(单选题)
抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()。
(单选题)
设坐标原点为O,抛物线y2:2x与过焦点的直线交于A、B两点,则()。
(单选题)
在平面解析几何中,当动点到一个定点的距离与它到一条定直线(定点不在定直线上)的距离之比是常数时,该动点的轨迹为圆锥曲线。常数的值不同,圆锥曲线的形状就不同。当常数小于1时,轨迹是椭圆;当常数等于1时,轨迹是抛物线;当常数大于1时,轨迹是双曲线。上述结论说明()①共性寓于个性中②矛盾的同一性推动事物的发展③事物的量变引起质变④事物的联系是具体的,多变的
(单选题)
若圆C1:(x-a)2+(y-b)2=b2+1始终平分圆C://(x+1)2+(y+1)2=4的周长,则实数a,b应满足的关系是()。
(单选题)
已知A={x|x>-1},那么正确的是()。
(单选题)
在VB设计中,已知x=-100,则sgn(x)的值为()。